Modified linear discriminant analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified linear discriminant analysis

In this paper, a modified Fisher linear discriminant analysis (FLDA) is proposed and aims to not only overcome the rank limitation of FLDA, that is, at most only finding a discriminant vector for 2-class problem based on Fisher discriminant criterion, but also relax singularity of the within-class scatter matrix and finally improves classification performance of FLDA. Experiments on nine public...

متن کامل

Modified Incremental Linear Discriminant Analysis for Face Recognition

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 37 Modified Incremental Linear Discriminant Analysis for Face Recognition R. K. Agrawal and Ashish Chaudhary Abstract Linear Discriminant analysis is a commonly used and valuable approach for feature extraction in face recognition. In this paper, we have proposed and investigated modified incremental Linear Discrimi...

متن کامل

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...

متن کامل

Separable linear discriminant analysis

Linear discriminant analysis (LDA) is a popular technique for supervised dimension reduction. Due to the curse of dimensionality usually suffered by LDA when applied to 2D data, several two-dimensional LDA (2DLDA) methods have been proposed in recent years. Among which, the Y2DLDA method, introduced by Ye et al. (2005), is an important development. The idea is to utilize the underlying 2D data ...

متن کامل

Geometric linear discriminant analysis

When it becomes necessary to reduce the complexity of a classifier, dimensionality reduction can be an effective way to address classifier complexity. Linear Discriminant Analysis (LDA) is one approach to dimensionality reduction that makes use of a linear transformation matrix. The widely used Fisher’s LDA is “sub-optimal” when the sample class covariance matrices are unequal, meaning that ano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2005

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2004.08.008